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ABSTRACT

An absolute scalar pseudo-viscosity ("'q") expression for handling shocks
automatically in numerical calculations of three-dimensional fluid dynamics
problems is derived. The expression is a generalization of that derived by
von Neumann and Richtmyer in the sense that the expressions are identical
for a plane shock wave. The basic assumption made is that a shock will be
formed in a material when there is compression in the direction of accelera-

"reasonable' physically, since this condition

tion; this assumption seems
indicates that a grid established about a point with such compression will
collapse, i.e., the "rear' of the grid will overtake the "front."

The expression "q" is derived for a generalized curvilinear coordinate
space and the expression is given for the three commonly used coordinate
systems. The expression is also written for the plane rectangular case and
the cylindvical case with no angular motion to be used in connection with the

IHEMP code,

INTRODUCTION

The use of a pseudo-viscosity to handle shocks automatically in numer-
ical calculations: of fluid dynamics problems is well known.1 The first programs
written were [or the solutions of problems in one space dimension for which

the pseudo-viscosity (''q") devised by von Neumann and Richtmyer was derived.

e 1 A

However, the expression for '"q'" in this one-dimensional geometry did not

——

carry over directly into more than one dimension. One of the expressions

! von Neumann and R. D, Richtmyer, "Finite Difference Methods for Initial-
value Problems' (Interscience Publishers Inc., New York, 1957) p. 205 ff.
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used for a two dimensional program involves the time rate of change of rela-
tive volume divided by relative volume (\'/'/V)2 which in one dimension is
equivalent to the gradient of the velocity used by von Neumann and Richtmyer.
However, in a cylindrical or spherical implosion, the term V/V will become
negative (forming a shock) simply because the mass is being forced into the
center even though the rear of a particular grid is not overtaking the front of
that grid. The derivation given here overcomes this difficulty and is, in
fact, a straight forward generalization of the expression devised by von

'q"" was required to indicate

Neumann and Richtmyer in the sense that the '
that compression is present in the direction of acceleration, to turn itself on
when this condition develops, and to give the same expression when a plane
shock passes through a "one dimensional material."! The expression derived
differs from theirs in that it is formed from vector quantities in three space
dimensions and the plane shock is not required to be parallel to one of the
coordinate planes in order for the "g" to work. The basic assumption made
is that a shock will be formed when there is compression in the direction of
the acceleration. The "gq" so derived is an absolute scalar formed from the
product of an absolute second-order tensor and two vectors and could be used

even in three dimensions.

n_mn

THE DERIVATION OTF A GENERAIIZED VON NEUMANN SCALAR "q
WITH DIRECTIONAL PROPERTIES3

Consider a body that, under some unspecified force system, is under-
going motion which will, in general, include rigid body translation and
rotation as well as deformation (I"ig. 1). Let:

XK(K = 1,2,3) refer to the coordinates of a point in the body in

a fixed, l.agrange, generalized coordinate system.

xk(k = 1,2, 3) refer to the coordinates of the same point in a
moving, ’Eu]erian, generalized coordinate system.

Zh(K = 1,2,3) be a fixed rectangular coordinate system.

zk(k = 1, 2, 3) be a moving rectangular coordinate system.

2Mark 1. Wilkins, "Calculation of Elastic-Plastic Flow," Lawrence
Radiation Laboratory (Livermore) UCRL-7322 (1963).

3The derivation and notation are taken largely from Chapters 1 and 2 of
Nonlinear Theory of Continuous Media by A. Cemal Eringen (McGraw-Hill
Book Co., Inc., New York, 1962).
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P be the position vector to (Xl, X2, X3) in the ZK system,

g be the position vector to (xl, x2, x3) in the zk system.,

E be the vector that represents the rigid translation of the body.
91{ be a base vector in the direction okaK froml(Xl, Xz, XS).
&) be a base vector in the direction of x— from (x ,x", x").

t  be the time.

DEFORMED

S—
= BODY

UNDEFORMED

1

z
Iig. 1

Then the motion at any time is expressed as:
X xRl x5, 1 or oF = KRt %2, x5, ). (1)

From Eq. (1) we can determine the path taken by a point in the unde-
formed body at (Xl, X2, X3) as a function of xk and t and conversely, we can
determine the path taken to (xl, x2, X3) as a function of XK and t (in this
treatment the inverse of X[\:(xl, x2, x3, t) is assumed to exist). In other words,
given a point in the undeformed body, we can determine where it goes and
given a point in the deformed body we can determine where it came from in
the undeformed body.

Consider a differential change in P in the generalized lL.agrange coordinate

system. This differential is expressed by:

dp = Gy dX" = G dX' + G, dX? + G, dX° (2)

2

and the square of the magnitude of this vector is:
as? = ap - dP = G, dX'" ax'] (3)

where GKL =G gL is the metric tensor for the XK system of coordinates.




Similarly, for the Eulerian coordinate system one obtains:

= gy dxk v (4)

along with its magnitude squared:

- - k . 2

—dE dB_ng dx dx, (5)
where ko " Bk By is the metric tensor for the Xk coordinate system.

The quantities dS2 and d52 can be interpreted as the square of an
element of arc length before deformation and after deformation respectively.
It is, therefore, possible to obtain a measure of the deformation produced
by the motion by calculating ds2 - dSZ.

The material or substantial derivative is a time derivative with the
Lagrange coordinate XKheld constant. It is denoted by D/Dt and it can be
shown that (see Appendix A):

D, .2 _ k 4
Bt (ds%) = 24, dxdx, (6)

where dkﬂ = 3 (Vk‘ﬁ + Vﬂ‘k) is the symmetric part of the velocity gradient, is
called the deformation rate tensor, and is an absolute second-order tensor.

is the covariant partial derivative of Vi (see Appendix A, Eq. (A.1)).

Vk: g
From (6) we see that:
k 0
1 D 2. _2 D ) dx~  dx
.2 Dt (ds®) = 45 o (d8) = 24 75 G5
or .
1 D _ k ¢ _
ds D (ds) = dyp = dgyy ™

where dxk/ds = n = is the unit vector along ds, and d(n) is called the rate of
stretching or rate of deformation. . -

Since dS is a function of XI\ only:

D
Dt
so we see that (7) is a measure of the rate of change of deformation with

(ds - dS) = —DD—t (ds) - (8)

respect to time divided by the current length of an element in the direction

’r&. Hence, (7) can be used to determine whether there is tension or com-

pression in the directionn, where p is an arbltrary unit Vector In other

words, given an arbitrary direction and a point p(x x2 X ) in a deforming




body, (7) can be used to determine whether an element of length in that direc-
tion is lengthening or shortening with time at a selected time t.

Consider a body in motion, select a point in this body at p(x s 2 x3).
One of the charactcrlstlcs of a von Neumann ''q" is that it is activated if the

2, x°) is a deceleration, i.e., the grid is collapsing in the

motion of p(xl, X
direction of acceleration., It is clear that if the vector nk in (7) is a unit vector
in the direction of the acceleration vector, then (7) will be able to measure
this effect, i.e., if

1
(n) = d~s '5{ (ds) <

then, with K< A /[A[ the grid is collapsing in the direction of motion,
where é is the acceleration vector.

It is important to note here that d, | is completely independent of the

coordinate system that is used to expr‘e(ss) dkﬂ and nk. This is easily seen
from the method of derivation since the elemént d52 = dB . dB is a scalar

derived from the scalar product of two vectors. This can also be seen from
(7) as follows: Since dkﬁ is an absolute covariant tensor of second order, a

transformation of coordinates from xk to §k through

—k
d§k = 9x 7 dxﬁ
0%
~ ot bt 1 « v ol 1 ' t -
regults in a transformation o! dkﬂ to du
m n
dl = d 93}.__. .__,_ak s

kf mn a;k 832’0

by detinition. The contravariant vector nk will transform to —Hk by
k

—k _ m 9x
n n .
m

ax

We now {form, using these,

FLILA ax™ oax" r ox & p ox !
diﬂ n- =d — =y n —_—
mn 5% ox ox " oxP
—k—0 _ ox™ ax X ox? ox! r p
d{cﬂ non-= dmn —k T i n
ox ° ax" ox* axP
k—{¢ m

T N - n_r p
den n dmn 61‘ 6p n n




where
. 1 ifi=j
st = = Kronecker delta
J 0 otherwise
or
—~k =4 m n
1 =
dkﬁ dmn n n

This invariance with respect to an arbitrary coordinate system is the chief
property of interest in this expression. In the HEMP? code the "Q'" is based
on V/V, where V is the relative volume. In a spherical or cylindrical im-
plosion the expression V/V becomes negative simply because the mass is
being crowded in to a smaller and smaller space while in the direction of
acceleration, the front surface of the grid (the one toward the center) is
moving faster than the rear surface. The quantity d(ﬂ) would indicate this
clearly, if n were a vector in the direction of the acceleration vector.

If we consider a shock moving through a material at rest and making
an angle with the coordinate system x , i.e., not along any of xl, x2, X", then
a coordinate system can be selected such that one coordinate & lies along the

acceleration vector and the other two coordinates (8,Y) are normal to a.

Then

and 5v
" o

d(’1_1‘) - d(a/) ) da/a/ ) % (Va;a N Vasa " o
where v is the velocity in the o direction and, in this case, is in the direction
of the shock. In other words, d(n) = d(a) is the partial derivative of the velocity
in the direction of the shock with&i‘espect to the space coordinate in the direction
of the shock. We see, therefore, that this is the same expression used by von
Neumann and Richtmyer‘1 in the "activating' part of the artificial viscosity and
all that has been done here is to express it in a generalized form.,

The sticky part of the problem involves the selection of the characteristic
length to be used to multiply the activation term and spread the shock over the
gsame number of zones in the numerical solution. von Neumann and Richtmyer
used AX, the Lagrange grid size in the direction of the shock (see Ref. 1,

p. 215 ff). In this case our grid is established in the system XK, is allowed to




deform in the system xk and is not in general in the direction of the shock.
Conceptually a grid length AA could be established in the shock d1rect1on
corresponding to @ above, and this could be transformed to the X coordinate
system, but in pract1ce this cannot be done since the grids are already estab-
lished in the X system, The approach taken here was to use the established
grid to determine a representative length in the direction of the acceleration.
Two lengths were tried (AS1 and ASZ)‘ AS1 was formed as the arith-
metic average of the projections of the two grid diagonals in a two-dimensional
grid on the acceleration direction. A82 was formed as the square root of the
sum (or average) of the geometric averages of the separate components of the
diagonals projected on the acceleration direction. If the figure below repre-
sents the grid at time step t and the quantities n1 and n2 are understood to be
calculated at the midpoint of the grid at time step t, then the expressions used

are:

4] 13
|
T T

GRID
, 1 2 1 2
S, - (Xg-X)In +(§(3—¥1)n f_f_!(xz-x4)n + (Y, - Y, )0
1 2
- 11/2
- 1.2 . - 2,2
ASy = !(” X - X Xy = Xy [+ D)7 Yy - ¥ [[Yy - Y,

where |B] is the absolute value or magnitude of B, and where

RPN S

, 1 s 1]

p sl
are the general expressions for the direction cosines in the acceleratlon
direction (see Ref. 3, p. 104). (Here't 1 is the stress tensor, f' the body
force per unit mass, and p the mass density.) The factors of 1/2 needed
in the averages are to be embodied in a multiplicative constant.

In the limit of a shock in one dimension, let Y = 0, then:
‘r - el + -
X3 - Xy 1+ 1%, - X, |
2

L\ - %, 1%, - X,

|

AS1 =

/2
AS,




So the grid size in the non-shock direction is not considered in the one-
dimensional shock as would be desired. Further, if the grid is square, then
X, - X, | = |X, - X,| and AS, =AS, = AX which is the factor used by von
Neumann and Richtmyer.

In the problems worked using this ''q," there was no obvious difference
between the two AS's. Some experimentation would be required in order to
make a selection.

The HEMP code is a two-dimensional code with plane or cylindrically
symmétric geometry and the expression for d(n) is (see Appendix B):

iy B 7 62 4 (B B ot
where Y is either the radial direction or the other rectangular direction. In

this code we have used both a linear and a quadratic''q" as follows:

Linear:
q=0 1fd(2).;()
Poa
q-= - CL—V—— d(n)AS if d(n)< 0
~ P
Quadratic:
q =0 if d(n) >0
0 2
q-cl & (d(n)) @97 if dgpy< 0,
where

CL and CO are constants

a is the sound speed
Po is reference density
V is relative volume

AS = ASl or A82 as discussed above




) = acceleration in x-direction

| z
A = Ly Xy, Y4 “yy 99 = acceleration in y-direction
y el 8x 8 y
A= (Az " A2>1/2
X y

|
\
|

mass density

CONCLUSION

The expression d(n) derived here is scen to be a measure of the rate of

deformation of an element of length through a material point divided by that

length in the direction n. It was assumed that if n were along the acceleration

vector through the point and if d(n) < 0 (compression), causing the grid estab-
lished about that point to collapSe so that the rear surface is overtaking the

front surface, then a shock is forming. The validity of the ''q" depends upon

this assumption which seems to be the assumption made by von Neumann and
Richtmyer and seems to be '"physically reasonable." d(n) gives an exact mea-

sure of the tension or compression in the direction n, The problem is to

choose the "right'" direction. The direction chosen (acceleration vector) is the

one which indicates that particles are ""bunching up'" in the direction of impend-

ing motion, which is assumed to indicate the formation of a shock.

% '
These terms are set to zero for a plane problem.
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APPENDIX A

THE MATERIAL DERIVATIVE OF ds>

First we define the covariant partial derivative of a vector, which is

indicated by the semicolon in the tensor expressions below

|

A
A,ljz . %A +I AT

’ ax ;Qm
BAk m
A’k.£ B ﬂ o Am ] (A.l)
’ 0x ki

where Ak is a contravariant vector and Ak is a covariant vector. The quantity

k N 82 N

em|  axlax™ oz
is the Christoffel symbol of the second kind. The quantities Alfg and Ak'ﬁ are

second-order tensors. Next, we define the material or substantial derivative

8xk
n

which is a time derivative with XK held constant:
k k
0B 0B
D (k) _ j k -m . Ji k m
iy = = + S e — +
Dt (B 2) 5t ' Pom * 5t Pom Y (A.2)
with Bl}( = B;(xl,x‘?,xs,t), where x™ = me/at = Dxm/Dt = v is the velocity

vector in the Eulerian system.

Now the quantity 19 is a function of xl, x‘z, x3 only and by Ricci's

theorem:
8ig;m = O
hence:
—]% (gkﬁ) = 0. (A.3)
By considering the second of (A.1):
dxk = ka dXK at any time t (A.4)

3

where ka € axk/axh is called the displacement gradient.

>

*
See Ref. 3, p. 439ff.
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Now we calculate the material derivative of ka First we recall that

K o= x L (x1,X2, X3, 1) but by the first of (A.1), XK = xK(x!, 2, x%, t) and
he’ence we can consider:

;\kK(Xl,Xz,XS,t) = akléxl,xz,xg,t), (A.5)
then using (A.2) and (A.5):

k
da

D (k).D k1.2 3, "2K k !

—DT(X,K) Bt ()s, ,x7,t) 51 +aK;£X . (A.6)
Using (A.1) in (A. 6):

Dk aakK aakK g K m -4

== X p. T + +4 a ., X (A7)

DL %, K~ "ot ok oml K

Now the ordinary derivative with respect to time of akKis given by:

.k oK
4 (ak ‘: _____ad K, i)i_Kxﬂ
dt K/ ot axﬂ.

and is as noted earlier >'<ﬂ = vﬂ, hence (A.7) becomes:
1 1
D k _d .k '*+{;1\'sam
Dt YK T dt K) i K
(4m

k
If, now, we think of a =\.<kK(X1 X2 X3

A, (A.8)

1) we can invert the order of differ-

entiation in the first term on the right of (A.8) and write:

! k l
D k .k £ m :
_D*tk,K—V,KF viX g (A.9)
L’m ;
. e L . . k_ k, 1 2 3
By the chain rule of differentiation considering v = v (x,x", x

the second of (A.1):
k k m
X o

,t) and using

[ x]
DK =(vk + }vﬂ)xm, Sk om (A.10)

Since D/Dt considers xi constant, multiplying (A.10) by ax® and using (A.4),
yields: ’

k £

D k
DI AR (A.11)
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Now we are in a position to consider the material derivative of dsz.

Using (5):

k., ! D k 2

D Vo ky, , 4 D
(gkﬂ dx dx } —gkﬁm(dx )dx" + g, dx b (dx

Dt )

D 2, _
*ﬁ{(ds)—

where we used (A.3) to remove 4 from inside the operator. If now (A.11)

is used:

L 2 k

k m
- Vi dx  dx . - (A.12)

g0 Vo dx™ dx

D 2, _
'D—,E(db ) =

As is well known the metric 10 is a lowering operator, i.e., Vo T gV and

is symmetric. Using this and changing the dummy indices:

D, 2 _ k, 2 _ k0
B—E(ds ) = (Vﬂ;k+vk;£)dx dx 2dk£ dx dx (A.13)

where dkﬂ_ z -%— (Vk:£ + Vﬂ:k) is the symmetric part of the velocity gradient and

is called the deformation rate tensor.

%
See Ref. 3, p. 434.
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APPENDIX B

EXPRESSIONS FOR d(n)

We will now derive the expressions for d(n) in three orthogonal coordinate
systems.

Before proceeding it is necessary to introduce the concept of physical
components of a vector and a tensor.ﬂ< In general, the components of a vector
or a tensor do not have the same units. For a displacement vector with con-
travariant components referred to a cylindrical coordinates, as an example,

we will show this.

Let:
.k
4Eu gy (B.1)
be the displacement vector. The base vector g is defined by:
9p m
£ 0z .
€k = Tk m (B.2)
~ ox axP
WhereNim Z unit vector along the rectangular coordinate axis z™. Ina
cylindrical coordinate system xl =r, x'?' = 0, x3 = 7z in the usual notation and
zl = X, 22 =y, z3 = z in the rectangular system in the usual notation so that:
1_ 1 2 2 _ 1. 2 3 _ 3
Zz7 =x cosx , z° =xsinx, z” =X

from which:

2 1 . 2
cCOS X - X'sinx 0

oz} .2 1 2
K = sinx X cos x 0
ox ‘
0 0 1
and
2, . . 2, .
= e +
g, (cos x )_;/1 (sin~ ),%2
1 . 2. . 1 2, .
= . N + .
g9 (x"sin x")i, + (x cosx ) iq
g3 = 13-
Hence:

1
lg, 1 =1, gyl =x", lggl = 1.

e
See Ref. 3, p. 436 ff.
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Now if u is a displacement vector, it has the units of length L and since
|g1| =1 and !g3! = 1, u! and u® have units of length L but [gzl = x! has units

L whence u” is unitless. Since 8o ~ Bk~ By Wesee that
ng’ N (no sum on k). (B.3)

In order to express the components of a vector in physical components, i.e.,
components that have the same units as the vector, it is necessary to take
parallel projections of the vector on unit vectors along the coordinate curves.

If we define such a unit vector:

e~ BBk - (B.4)
then we define the physical components of u, denoted by u(k) by:
(k) (B.5)

u-=u e .
u Sk
Since a vector is not dependent upon the coordinate axis used to measure it,

we can write:

uk = )
g - U &

and using (B. 4), we can write:
(K) _ k- k_ (k) -
wttEu g s u T u )/x/gkk' (B.6)
To obtain the physical components of the covariant components we

lower the index, i.e.

) 2N\ (0)/ ro-
u g, u —Z 8o U /\[gﬂﬂ. (B.7)
£

To carry this definition to second-order tensors, a tensor Bkﬂ is converted to
a vector Bk by the use of a vector nﬂ as follows:

k_ ok ¢
B —Bﬂn,

then using (B.6) on Bk and nﬂ one obtains:

(k) _xk o7
B (g)‘B ﬂ\/gﬁ_lg/g_ﬁ_g' (B.8)

*
It will be understood that where a pair of repeated indices are underlined,
that no sum is to be taken.
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Equation (B.8) gives the right physical components of Bkﬂ. The left physical

components are given by:

g(K)_ gk
By) = By N/gEE/ggi?_' (B.9)
In general, B(k()ﬁ)# B(ﬁ;). Now:
- k £ _ k £
d(B) = dMn n = nkdﬂ n

using (B.6-B.8):

ngm ('m)" ((kzﬂ) /@;; =y
( N gkk] Jeo /
or
i - ZZZ - (m) d(k&) 2
Tk \/gmm Bk
For an orthogonal coordinate system Elom 0 for k ¥+ m, whence:

NN (K ) ()
d( )—%%n d(g) n , (B.10)

and writing (B.10) in component form:

S T, @ e, 8 e
R E L oy n @ e gy )

(1) (1) ()

d

(2) (1) (2)

- @) (1) (1) (3

(3)

(2()3) (2) (3, d<3()2)n(2) 23 (B

+ d

(3) (1) (),

We have defined:

1
deg T3 Vg T Vg

and we obtain from this:

Vk + kmV
VR 2:m) "’

where gkm is the metric tensor for the reciprocal base vectors and its

k  km -1
dp=8 dye "3l

matrix is given by:
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km, _ -1
(g7) = (gkm) )
Now
v - n
2;m 8 Vim
so that
k 1k n _mk
dﬂ"’z‘(";£+ggnv;mg ) (B.12)
The matrix for dlfe can thus be obtained from:
k ~ 1 k n mk T
(dﬂ) "2 {(V;ﬂ) ¥ (gﬂn Vom & ) : (B.13)

T
where (An;) indicates the transpose of the matrix (An;).

For an orthogonal coordinate system:

\

g, 0 0 o 1/g;; O 0 }
(gﬁn)= 0 8o9 0 | (g ) = 0 1/g,22 0 ,

0 0 g53 0 0 ]'/gss/

using these in (B.13) and (B.8) we can write the matrix of dkﬁ in physical

components as:

/e | o :
1 1] B €2 ol 1| /B11 1, /B33
Vi1 AN Vol 3 e Vst e v
: €22 7 811 N 833 N Bir T
-~
(d(k) \ :/ 1 B2z 2, P11 o1 2 1 /gzz L2, [Bs3
(ﬂ)) ; 2 /& st 899 32 ;2 2|/ 835 33 €95
\,1 €33 /2 [ /855 5 [Ban o 3
\3 22 v vyl | e vt o v V.3
NS A 833 i3 N B2z ¢ 33 7 ;
Using (B. 6)
(k 1 - 2 e 3
(n)) < (n MBI WBg2 I «/g33)'

Putting these last two in (B.11):

_1 2.2 3, 3.2 ' 2 1y 1.2
d(n)'v;1(“) g11+V (n*) ggg t V.3 (n") g33+<g22";1+g11";2 n'n

1 2% 23
+(gll Vgt 833V, )nn +(g33 ot 8ygVvig)nmn. (B.14)

3
v

;2



Since we desire d(n) in the direction of acceleration, we will express

n as follows:
~J

S T I
L - VB A B A JE33 A
~ \ TAT [A] TA]

where

_ 1,2 2.2 3.2
|Al ~Jg11(A )+ g22(A ) +g33(A

)Y = acceleration,

then we may write (B.14) as:

1, 1.2 9 . 2.2 3,32 2, 1..1.,2
. VAN g H V(AT gy 1 v (AT) gag T gy, v T gy Vi JA A
(a) 1,2 2.2 3.2
1 3\ 1,3 2 3\ .2 .3
| <g11V;3+g33V;1>A A%+ (gyy vy T aggvy) A% A (B, 15)

13 5.2 3.9
811 (A)7 + 850 (A7) + gg4(AT)

I'or a rectangular coordinate system:
1 2 3 _
X =x,x Ty, X Tz
11 " 833 " 833 71
v, = 8)1;1/8 x)
For a cylindrical coordinate system:
1 2 _ 3
XT S, X X =

r, =6, x Z
81y " €33 " 1 ggp 7Y
f f)_r _8_r_ 0 _Q_r‘_\
I Br 56 ~ Y Bz
} ! . . . . .
i 00 0 00 , r 06
= -2 4+ 2 —_—t 4+ = i
Vi l or r 96 r 0z
L . .
or 006 oz /
For a spherical coordinate system:
‘x1=r, x2=6, x3=z//
2 _ .2 .2
=r~gin” 6

8111, 899 T T, 833
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ar dr or ;. 2
57 %--re w—r(//sme
iy.| 8,86 80,r 26 o
(V;J.)— T 56 T T 5y Ysin@ cos6
-3—%—%‘5 g—l£+xpcot9 —%+£+8cot9

Using these in (B.15) we can write:

For a rectangular coordinate system in three dimensions:

D% (4 12 L 0y 4 12 (a}x ?_,X) Bx +(8y+ 82)
L o (A% + 5L (a )7 + o (A) + |5 AAy+(aZ }AA 5t 5 AA,
(A)~ :
(Ax) + (Ay) + (Az)
f'or a cylindrical coordinate system:
9 A 2, (80 , ¥ 2082 ., 2, [or 23{9_)
A + (35 PE) AT FE AT (gt gl A A
(4) (A )%+ (rA)® + (4 )
or _ 9z 19z P2 86
+('8'z‘ Br)AA +"é" r 5z | Mot
2
(Ar) + (FAQ) + (AZ)
For a spherical coordinate system:
89 /Q{é L r .2
dA ) (A) +( )(rA) ‘all/ i—;+¢/cot9) (rAwst)
(2) (A )% + (rA )% + (rA sing)®
r v
or . 290 o 2.2 9y (80 i 2,30\ 2
+(89+r Br)ArA9+(d¢/+r8m 98 AA +k8 986)1' ABA(//

2
: + + 3
(Ar) (r'AG) (rAlr// 51n9)
It is easily seen from the above that for a one-dimensional system:

da)”

g

which is the quantity used by von Neumann to activate his ''q"" and whose

magnitude was used is forming the "qg."

-
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It will be noted that any direction could be selected for n and in case
some other direction is desired, (B.14) can be used to calculate d(n)'

Quite obviously the first two expressions above for d(A) can be written

as:
% 2 L 0Y (a2 4 (0x 4 By
A - 5% (A) +ay2(Ay) +2(8y +8X)AXAy
~ (A% +(a)

if cylindrical symmetry is assumed with no angular motion and y is either the
radial direction or the other rectangular direction. In this case the com-
ponents of the acceleration vector are obtained from the motion equations as

given in Ref. 2, p. 20 and are reproduced below:

A
X

b
L foZ,, or T )
= =X 4 XYy XY S acceleration in x-direction
pl 9x Oy y 1

W LEI S
A == X VY 4 XY = acceleration in y-direction
y el 9x Oy y |

where

ii

th

normal stress in i direction

Tij(i J) = shear stress in the j direction on a plane with a normal
in the direction i
p = mass density .

In connection with the HEMP code (see Ref. 2) the expression d(n) has
another application. This is in connection with the problem involving a
material with a different yield strength in compression than it has in tension.
In such a case one must be able to determine whether there is compression or
tension in the direction of motion. The quantity d(n) can answer thig ifg is

along the velocity vector.

sk
These terms are set to zero for the plane case.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the information con-
tained in this report, or that the use of any information, apparatus, method,
or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method or process dis-
closed in this report.

As used in the above, "person acting on behalf of the Commission "
includes any employee or contractor of the commission, or employee of such
contractor, to the extent that such employee or contractor of the Commission,
or employee of such contractor prepares, disseminates, or provides access
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